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A new, simple, and efficient technique is presented for the accurate evaluation of
the Boys functions Fm(x) (BFs) with integer and noninteger values of m appearing for
the calculation of multicenter multielectron molecular integrals in a mixed Gaussian
and plane-wave basis set. The extensive test calculations show that the proposed in this
work algorithm is the most efficient in practical computations.
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1. Introduction

It is well known that the multicenter molecular integrals, appearing in the
mathematical expressions of physical and chemical properties of molecules, are
evaluated by the use of two types of orbitals: Gaussian-type orbitals (GTOs) and
Slater-type orbitals (STOs). The applicability of Slater-type functions to other
than trivial molecular problems are hindered by the enormous computational
complexity of the resulting expressions for matrix elements of the Hamiltonian.
Boys found a more tractable choice in Ref. [1] as he introduced GTOs and
developed into highly efficient algorithm [2–4]. Much simpler expressions for the
matrix elements more than compensate for improper behavior of GTOs at the
origin and infinity. Indeed, an s-type Gaussian (Gaussian function with l+m+n

equal 0) is smooth at the origin, whereas an s-type STOs has a cusp at the origin
(nonzero derivative with respect to r). Also, GTOs decay with r much faster that
STOs. However, a fact that a given STOs can be well represented as a linear
combination of only few GTOs with different exponents was noticed early on,
thus STO-nG basis sets were introduced, in which a single STOs is represented
as a linear combination of n GTOs.

One important note to make before we move on to mathematical details is
the value of efficient algorithms for computing integrals. Normally, in a typical
high accuracy calculation only a small portion of CPU time is spent in computing
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molecular integrals and the major part is spent in computing wavefunction param-
eters. It is well known that the fast and accurate computation of the multicenter
multielectron integrals over GTOs and electron scattering theory requires the eval-
uation of the BFs function [5–15]. In literature, variational methods have been
proposed for improving the accurate evaluation of the BFs [16–37].

This paper introduced a new general and exact, yet simple, algorithm for
the evaluation of the BFs. This proposed algorithm would be also useful for the
estimation of results already known from experiments and theory.

2. Definitions and computational method of the BFs

The BFs are defined by [1]

Fm(x) =
∫ 1

0
t2me−xt2

dt, (1)

where m are arbitrary integer or noninteger values and x is a nonnegative real
number depending on coordinates of four orbitals. This function satisfies the fol-
lowing recursive relations [13]:
upward recurrence for Fm(x)

Fm(x) = 1
2x

[(2m − 1)Fm−1(x) − e−x ], (2)

downward recurrence for Fm(x)

Fm(x) = 1
2m + 1

(2xFm+1(x) + e−x), (3)

F0(x) = 1
2
√

x
γ (1/2, x), (4)

where γ (σ, x) is well known incomplete gamma function defined by [38]

γ (a, x) =
∫ x

0
ta−1e−t dt. (5)

One of the efficient methods for the calculation of BFs in the intermediate region
of x(10−8 < x < 35), has been proposed as [13]

Fm(x) = e−x lim
N→∞

N∑
i=0

(2x)i

(2m + 1)(2m + 3) · · · (2m + 2i + 1)
. (6)

When x � 35, the F0(x) is evaluated by [8]

F0(x) =
√

π

2
√

x
(7)
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and Fm(x) are computed by a recursion formula

Fm(x) ≈ (2m − 1)Fm−1(x)/x, (8)

where m = 1, 2, 3, . . . . Another efficient method for calculation of BFs for large
enough x (approximately more than 60) has been proposed in Ref. [26] as

Fm(x) ≈ 1
2

√
π

z

(2m − 1)!!
(2x)m

. (9)

Using Equations (2), (6), (7) and (9) the numerical aspects of BFs for vari-
ous values of parameters have been investigated in Refs. [16–37] and references
quoted therein. It should be noted that the algorithms presented in these works
are not of completely general types and can not be used to calculate the BFs
for arbitrary values of parameters. This difficulty can be overcome by using the
downward recursive relation. In the downward recursion, the error made in the
initial value decreases by a factor x/(m + 1). Starting from a sufficiently large
value of mt , the initial value can be chosen arbitrary. As mentioned, all values
of Fm(x) have the same order of magnitude; therefore, in the downward recur-
sion, F0(x) (equation (4)) may be taken as the initial value.

As a result of having d significant digits in Fm(x), we should start the
downward recursion with an even value of mt satisfied

mt �




d
|log(mmax/x)| + mmax for mmax �= x,

d
|log(mmax)| + mmax for mmax = x.

(10)

One can determine the accuracy of the computer results obtained from the
downward recurrences.

We notice that, by means of downward recurrence relations for Bk auxil-
iary functions presented in Refs. [39, 40] we have had considerable success in the
calculation of multicenter nuclear attraction and electron repulsion integrals over
STOs [41–44].

3. Numerical results and discussion

A novel technique is introduced to accurately calculate the BFs by the use
of downward recursive formula equation (3). The method is completely general
and free of any restrictions on its application. To verify the accuracy of the
proposed method the results of different geometries are presented. An excellent
agreement between our method and the other investigations can be observed in
tables. It can be seen that the results compare very well to each other.

The calculations were performed on a computer Pentium III 800 MHz
(using Turbo Pascal language) in double precision with an accuracy of significant
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digits. The results for the BFs are shown in Tables 1–4. As can be seen from the
tables, our results are in excellent agreement with the literatures [8,13,26].

It should be noted that the algorithm, presented in this paper is general and
can be used to calculate the BFs for arbitrary values of parameters.

Table 1
The values of Fm(x) function obtained for 10−8 < x < 35.

m x Equation (3) Equation (6)

8 16 4.02308592502660E−07 4.02308592502660E−07
15 27 1.08359515555596E−11 1.08359515555596E−11
20 30 1.37585444267909E−03 1.37585444267909E−03
25 13 8.45734447905704E−08 8.45734447905704E−08
31 34 2.90561943091301E−16 2.90561943091301E−16
11 38 4.04561442253925E−12 4.04561442253925E−12
42 32 5.02183610419087E−16 5.02183610419086E−16
75 30 1.01429517438537E−15 1.01429517438537E−15
100 33 3.42689684943483E−17 3.42689684943483E−17
20 1.4E−3 2.43577075309547E−02 2.43577075309547E−02
45 6.4E−5 1.09883228385254E−02 1.09883228385254E−02
100 2.6E−7 4.97512309732144E−03 4.97512309732144E−03

Table 2
The values of Fm(x) function obtained for 36 < x � 60.

m x Equation (3) Equation (8) Equation (6)

8 42 1.11826597752251E−10 1.11826597760535E−10 1.11826597752251E−10
16 50 2.40509456111904E−16 2.40509458873868E−16 2.40509456111904E−16
21 56 1.43739730342730E−19 1.43739736976764E−19 1.43739730342730E−19
12 60 4.05791663779760E−15 4.05791663779769E−15 4.05791663779760E−15
15 53 3.14434039868936E−16 3.14434039992514E−16 3.14434039868935E−16
18 58 1.78336953967902E−18 1.78336954046990E−18 1.78336953967902E−18

Table 3
The values of Fm(x) integrals obtained for x > 60.

m x Equation (3) Equation (9) Equation (6)

8 63 3.56261924865627E−12 3.56261924865627E−12 3.56261924865627E−12
14 68 3.09783511327517E−17 3.09783511327517E−17 3.09783511327517E−17
20 73 1.71295886102040E−21 1.71295886102059E−21 1.71295886102040E−21
33 85 1.74268831008018E−29 1.74268831019472E−29 1.74268831008018E−29
36 100 3.08919970425521E−33 3.08919975617600E−33 3.08919970425521E−33
100 120 4.97723065221079E−53 5.13707096722718E−53 4.97723065221079E−53
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Table 4
The values of Fm(x) function obtained for noninteger m.

m x Equation (3) Equation (6)

5.7 13.3 9.02296149898981E−06 9.02296149898981E−06
0.5 23.6 2.11864406767677E−02 2.11864406767677E−02

23.8 3.4 7.92593349658604E−04 7.92593349658604E−04
25.8 0.4 1.29331240687006E−02 1.29331240687006E−02
28.3 0.002 1.73275865107165E−02 1.73275865107165E−02
36.6 42.7 7.12651246345736E−02 7.12651246345735E−02
43.2 54.2 1.53021328677383E−24 1.53021328677383E−24
64.3 75.4 5.52165865464571E−34 5.52165865464571E−34

104.6 115.4 1.26350192129925E−51 1.26350192129925E−51
115.6 5.4 2.03911971791491E−05 2.03911971791491E−05
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Diego, 1994).
[32] M.J. Frisch, G.M. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R.

Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A.Al-Laham,
V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong,
J.L. Andres, E.S. Replogle, R. Gompelez, R.L. Martin, D.J. Fox, J.S. Bingley, D.J. Defrees,
J. Baker, J.P. Stewart, M. Head-Gordon, C. Gozalez and J.A. Pople, Gaussian 94 (Gaussian,
Pittsburgh, PA, 1995).

[33] F.E. Harris, Int. J. Quant. Chem. 23 (1983) 1469.
[34] J.A. Pople and W.J. Hehre, J. Comput. Phys. 27 (1978) 161.
[35] L.E. McMurchie and E.R. Davidson, J. Comput. Phys. 26 (1978) 218.
[36] V.R. Saunders, in: Computational Techniques in Quantum Chemistry and Molecular Physics,

eds. G.H.F. Diercksen, B.T. Sutcliffe, and A. Veillard, (Reidel, Dordrecht, 1975).
[37] L.Y.C. Chiu and M. Moharerrzaden, Int. J. Quantum Chem. 73 (1999) 265.
[38] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Sums, Series and Products 4th ed. (New

York, Academic Press, 1980).
[39] I.I. Guseinov, B.A. Mamedov, M. Kara, M. Orbay and Pramana, J. Phys. 56 (2001) 691.
[40] F.E. Harris, Int. J. Quantum Chem. 100 (2004) 142.
[41] I.I. Guseinov and B.A. Mamedov, J. Mol. Model. 8 (2002) 272.
[42] I.I. Guseinov, R. Aydın and B.A. Mamedov, J. Mol. Model. 9 (2003) 325.
[43] I.I. Guseinov and B.A. Mamedov, Int. J. Quant. Chem. 93 (2003) 9.
[44] I.I. Guseinov, A. Özmen, Ü. Atav and H. Yüksel, Int. J. Quant. Chem. 67 (1998) 199.


